
Grid Deployment Experiences: The path to a production quality LDAP based
grid information system

L. Field, M. Schulz, CERN, Geneva, Switzerland

Abstract

This paper reports on the deployment experience of the
de-facto grid information system, Globus MDS (Meta-data
Directory Service)[1], in a large scale production grid and
how the results of this experience led to the development
of an information caching system based on a standard
OpenLDAP (Lightweight Directory Access Protocol)[2];
database. The paper then describes how this caching sys-
tem was developed further, from the results of performance
and scalability tests, into a production quality information
system. The generic information provider is also intro-
duced and the reasons for its development explained.

INTRODUCTION

The Globus Project[3] is the self defined de-facto stan-
dard for Grid computing. Many Grid projects around the
world are based on the Globus Tool Kit 2 (GTK2) from
Globus[4]. Once such project was the EU DataGrid (EDG)
project[5]. The objectives of the project was to provide
a Grid computing infrastructure for intensive computation
and distributed data storage, across widely distributed sci-
entific communities. The main goal of the project was to
build on top of GTK2, higher level services that included:
resource brokering, data management, Grid monitoring and
distributed mass storage. The resulting middleware, GTK2
and the EDG middleware, would enable large scale Grids to
be used by experiments in the three main application areas,
High Energy Physics (HEP), Earth Observation (EO) and
Bioinformatics (BIO). As the EDG middleware was built
upon GTK2, the quality of GTK2 would directly affect the
quality of the EDG middleware.

The GTK2 contains four core components; Grid Re-
source Allocation Manager (GRAM), GridFTP, Grid Se-
curity Infrastructure (GSI) and the Meta Directory Service
(MDS). MDS is the Grid information service. The data
model for the information service is based on LDAP. The
information that can be used in the information system is
defined by an LDAP schema. The information system is
made of three parts; Information providers, Grid Resource
Information Services (GRIS), Grid Information Index Ser-
vices.

An information provider is a script that obtains static in-
formation from a configuration file and also dynamic in-
formation about other local services. This information ar-
ranged into the ldif format and the ldif is printed to stdout.

The GRIS is deployed on the same node as the infor-
mation provider. The GRIS will execute the informa-

tion provider and obtain the resulting ldif from stdout.
The information stored in the GRIS can be queried by
an ldapsearch on the machine running the GRIS, ensur-
ing that the correct port is used and the bind dn is mds-
vo-name=local,o=grid. The GRIS can register itself with a
GIIS.

A GIIS can be on the same machine but is usually found
on another machine. A GIIS is given an mds-vo-name other
than local. If a GIIS is queried by using an ldapsearch, en-
suring the correct port and bind dn, the back end in the GIIS
will then query the GRIS, the information provider will be
executed and the information will be flow back through the
components to the client that queried the GIIS. A GIIS can
register itself with another GIIS. This enables a hierarchy
to be built so that all information can be found by querying
one point. To make the system more efficient, there is a
cache mechanism built into the GIIS and GRIS. If another
query is executed before the cache time-out period, then the
information is returned from the cache and thus makes the
system more efficient. However, this will also result in the
information being slightly stale.

INITIAL DEPLOYMENT

The EDG project had a development testbed consisting
of five sites, CERN Switzerland, Ruthford Appleton Labo-
ratory UK, CNAF Italy, NIKHEF Netherlands and IN2P3
France. The main building blocks, nodes, for the EDG
project were the Computing Element (CE) and the Stor-
age Element (SE). The CE is the interface to computing
resources eg. a gateway to a batch system. The SE is the
interface to storage, either a Mass Storage System (MSS)
or a distributed storage system. Each site in the testbed con-
tained at least one CE and one SE. The CE and SE are the
main source of information in the Grid information system.
Both the CE and SE had a GRIS installed and an informa-
tion provider. Each site ran a site GIIS and a country GIIS,
both of these on the CE. The top level GIIS was located at
CERN. (see Fig. 1).

Hanging Problems

The first noticeable problem that occurred was that the
top level GIIS would always hang when queried. It was
found that this was due to problems in the lower levels of
the hierarchy. When the top level GIIS is queried, it sub-
sequently queries all the GIIS’s that are registered to it and
waits for the response. As one or more of the lower GIIS’s
was not responding the query would just hang. This prob-



Figure 1: Deployment

lem was also observed at all levels in the hierarchy. If an
information provider hung, the GRIS would not respond
and all higher level GIISs would also hang. MDS had a
number of configurable timeout parameters. One such pa-
rameter was the timeout for the query. It was found that
this timeout did not work. For over six months the MDS
code was investigated and a number of bugs were found
that help fix some of the hanging problems.

Scaling Problems

Once the hanging GIIS problem was fixed another prob-
lem in the information system was found. When stress test-
ing the information system it was found that the informa-
tion system would again hang. With a stress on the sys-
tem of 3 queries per second and 3 sites in the information
system everything work fine. However when a fourth site
was added, the top level GIIS would hang. A test was con-
ducted to find out if this was a problem with MDS or a limit
in OpenLDAP. A script was produced that would query
the site GIIS’s and add this information to an OpenLDAP
database. It was found that with all five sites in the OpenL-
DAP database, there were no problems, even when being
queried over 10 times per second. However when the same
test was tried with MDS, the queries would hang.

Introducing the BDII

As the standard OpenLDAP database had proved suc-
cessful in the tests, it was decided that an Information In-
dex would be used for the top level MDS node. This piece
of software was named the Berkley Database Information
Index (BDII). The BDII was hand configured with the site
GIIS’s. Periodically the BDII would query each site GIIS
and populate the OpenLDAP database. A timeout was in-
cluded in the search in case a country GIIS did not respond.
The refresh time for the BDII was 30mins. In this mode of
operation the BDII was viewed as a caching mechanism for
the information system. Although this was not an ideal so-
lution, it produced stable information that could be used for
testing the other Grid system components.

LCG

LCG (LHC Computing Grid), is the largest user of the
software delivered by EDG. The goal of LCG is to deliver
the computing infrastructure that is required by the four
experiments in LHC: Alice, Atlas, CMS and LHCb. The
production run will start in 2007 when the LHC accelera-
tor is turned on. LCG will ramp up to this production by
participating in a number of data challenges. LCG has the
freedom to do what is necessary to provide a production
grid that is usable by the experiments. LCG inherited the
EDG code base and is endeavouring to run a production
grid system with this code. LCG has fixed bugs found in
the software and re-engineer’s some of the code so that it
will meet the production requirements.

Further Development

The BDII had not changed much since it had initially
be written as a test. A few small modifications were still
required, however it was decided that more time should
be spent on re-engineering the BDII. The reasons for this
were; to ensure the code meet the quality requirements for
LCG code development, improve the configuration, sim-
plify the code where possible, improve the logic and gener-
ally change the BDII from a prototype to production qual-
ity.

The additional functionality that was added during this
re-engineering were: the automatic update of the configura-
tion and support for information provider scripts. This au-
tomatic update enables the configuration for the BDII to be
updated via a web page. The configuration contains a list of
LDAP URLs for the BDII to query. The automatic update
will check a web page for an updated version of this config-
uration. The BDII also supports information providers. If
the URL of an information provider is in the configuration
file then the BDII will run it and obtain the LDIF output.
This means that the BDII can also act as a GRIS as well as
a GIIS.

INITIAL TESTING

Before the re-engineered BDII was introduced into the
production system, a series of tests were conducted. These
tests had two main functions: firstly to ensure that the BDII
was ready for the production system and secondly to under-
stand its limits. All the following tests were conducted on a
dual 1GHz Intel Pentium III machine with 512Mb of Ram.

Performance Testing

These tests involve gathering information from the in-
formation provider scripts and pushing that data into
the OpenLDAP database via the BDII. The information
providers scripts were created by doing LDAP searches on
the LCG1 production grid and writing this output to a file.
A wrapper script would then print out the contents on the



file thus simulating the real information in the grid infor-
mation system. The reason why the ldapsearch was not
used directly on the GRIS is due to the varying time delays
that occur when querying an MDS based grid information
system.

Three different entry points to the grid information were
used.

The top level, old BDII: 1 file of 1.8Mb. The regional
level, GIIS: 3 files, 780k, 823k and 217k. The site level,
GRIS: 24 files, CE 71k and SE 5k.

All the three entry points produced the same 1.8M of
information, 658 ldap entries for 24 sites.

For each test two times were measured and recorded.
The first and largest time is how long it takes to add all
the entries to an empty database. The second is how long it
takes to do an update on that database.

Table 1: No query load
Level Add Modify
Top 20s 7s
Region 29s 7s
Site 16s 9s

Table 2: 5 query streams
Level Add Modify
Top 21s 12s
Region 40s 28s
Site 20s 15s

Table 3: 10 query streams
Level Add Modify
Top 24s 16s
Region 50s 39s
Site 24s 17s

Stress Testing

This test involved inserting information from an infor-
mation provider script and pushing the data into the OpenL-
DAP database via the BDII, whilst simultaneously query-
ing the database by 10 parallel streams. The information
provider script was the same the top level script as used in
the performance testes, 1.8Mb of data from LCG1. The in-
formation provider script was run every 30 seconds and the
data pushed into the database. The query process would
fork off 10 queries and wait for them to return and then rest
for 1 second before querying again.

The test ran for over two weeks, in which time over 2
million queries on the database had be done with no cor-
ruption of the LDAP database.

Initial Deployment

The performance tests showed a differences in the time
for the different levels are due to two factors. The size of
the data and the number of streams. Each stream will read
separately the LDIF, then insert the LDIF into the database.
There is a finite speed at which data can been added to the
database. There is also an overhead for creating the connec-
tion to the information source. From the results, it seems
that it is best either to read all the data from one source or
read small amounts of data from many sources. As such it
was decided that for deployment on top level BDII should
be used that connects to each site GIIS.

The BDII was deployed in a production environment.
This showed up a few minor bugs which were fixed and the
BDII was gradually hardend to the production enviorment.
As the number of sites reached 50, the BDII information in
the BDII no longer seemed to be consistent. The investiga-
tion into this showed that LDAP queries were queueing up
and due to a configarable limit in the database new queries
were being rejected. The reason why the queries were be-
ing queue was due to the time that it took to update the
database. Read and Write operations were occuring simul-
taneously and the write operation was taking so long that
the number of queueing queries would increase. Reading
and writing to the database simultaneously significantly de-
crease performance.

The stability of the BDII showed up some instabilty
within the lower levels of the information system. For the
possibilty of replaceing the site GIIS with a site BDII was
looked into. After some trials at afew major sites it was de-
cided that all the site GIIS would be replace by site BDII.
A site BDII is idential to a top level BDII. A site BDII only
contains information about a site. It obtains this informa-
tion by queryig the GRIS on each resource at the site.

Further imporvements

The performance tests showed that there is a difference
between the adding of the data to a clean database and up-
dating the database. This difference was due to the over-
head of creating the LDAP nodes in the database. Each
entry has a dn which describes the position in the database
hierarchy. If a modification is tried on an object that does
not exist an error is generated and the object will have to be
created. The creation of this object generates many calls to
the database as all the parent nodes also need to be created.
The database would be updated from an empty database,
the entries would be sorted by the length of the dn and in-
serted sortest first. This way the parents will always be
added before the child.

The performance test showed that puting a query load on
the database would increase the time that it took to update
the Database. This increase in time cause a problem when
the number of sites reasched 50. For this reason the BDII
was changed to use two databases. One read only and one
write only. When the write database had been updated it
would be swapped with the read only database. This would



decouple the reads and writes from the same database and
hence remove the problem.

Site Scalability Test

To test that the BDII would work for many more sites
than were available a simulated scalibity test was required.
The aim of this test was to see how many sites the BDII
could support. A script was created that would populate a
slapd server with example information (17.1kb) that would
be produced from one site. This script could be used to
start 50 slapd servers using different ports on one machine.
The BDII would then be updated and the time taken for the
update measured. If the test was successful another ma-
chine was added that also had 50 slapd server running. The
results (in the table below) of this test show that the BDII
can easily cope with the amount of information produced
from 1000 sites although the time that is taken to update
the database increases. The limit on the number of site is
therefore dictated by the required freshness information.

Figure 2: Scalibility

Final BDII Architecture

Figure 3: BDII Architecture

THE GENERIC INFORMATION
PROVIDER

The Generic Information Provider (GIP) was deveoped
for one reason. LCG had to support muliple systems and

using the current set of information providers would re-
quire writting a new information provider for each system.
As most of the information produced by and information
provider is static it seemed to be excess work.

The GIP is a framework where by a common configura-
tion can be used from producing the static information and
dynamic plug-ins are used to obtain the dynamic values.
The static information is created by using a configuration
file with the values, a configuration script and templates
that correspond to the structure. The configuration is only
require to be done once to create the static information. If
there is no dynamic information then the GIP will simply
read the static information and print the output to standard
out. If there is a dynamic plug-in, the GIP will run this
to obtain the dynamic information then overwrite the static
value with the dynamic value when being printed to stan-
dard out.

On of the main advantages of the GIP is that it makes
a clear separation between static and dynamic data. This
separation, along with the concept of the plug-in, enables
the GIP to be easily adapted to produce information about
any system. By using a common framework to configure
the static information, the plug-ins can remain small and
system specific.

Results from deployment

The GIP waits for a period of time and if the plug-in
did not return it within this period it would return the static
defaults. The results from the deployment showed that on
some systems, eg a batch system with 500+ nodes, the dy-
namic plug-in would take quite some time to run. The reson
for this was that the underlying query to the batch system
would take quite some time. A caching mechanism was
built into the GIP that would be used for all dynamic plug-
ins. The GIP will fork of a process for the dynamic plug-in
and the dynamic plug-in will write its output to a cache.
This means that if the dynamic plug-in is taking a long time
to return, the GIP can respond much quicker by used the old
information that is in the cache. There is a timeout for the
cache where if it is too old the static defaults will be used.

Figure 4: GIP Architecture



CONCLUSION

From the deployment experience in EDG and LCG,
MDS is unusable in a production environment as a grid in-
formation system. Using a standard OpenLDAP database
and a small wrapper script to source the grid information
and update the database, it is possible to build a produc-
tion quality grid information system. This highlights a few
points for successful software. Build on a good implemen-
tation of established standards. Concentrate the small sub-
set of the core functionality. Follow a good quality control
procedure where the results of thourgh testing are fed back
into the deveopment of the core functionlity.

The results of the tests that the best way of using the
BDII is for it to query directly each site.

The limitation on the number of sites a BDII can support
is two fold. As the BDII spawns off a process for querying
each site, the number of sites will be limited by the number
of processes that the operating system can spawn off itself.
The second limitation is the amount of data in the system,
as the time it takes will increase as the amount of data in-
creases. The period between updates will also increase.
This fundamentally means that more sites, and hence infor-
mation in the grid, the more stale the information will need
to be. This is true for all grid information systems. Even if
improvements are made to the update speed and hence the
data is made less stale, more data will always lead to stale
data.

REFERENCES

[1] http://www.globus.org/mds

[2] http://www.openldap.org

[3] http://www.globus.org

[4] http://www.

[5] http://www.edg.org


